References and Notes
<A NAME="RW02106ST-1A">1a</A>
Pearson WH.
Bergmeier SC.
Chytra JA.
Synthesis
1990,
156
<A NAME="RW02106ST-1B">1b</A>
Dulcere JP.
Tawil M.
Santelli M.
J. Org. Chem.
1990,
55:
571
<A NAME="RW02106ST-1C">1c</A>
Pearson WH.
Bergmeier SC.
Degan S.
Lin KC.
Poon YF.
Schkeryantz JM.
Williams JP.
J. Org. Chem.
1990,
55:
5719
<A NAME="RW02106ST-1D">1d</A>
Marco-Contelles J.
Rodríguez-Fernández M.
J. Org. Chem.
2001,
66:
3717
<A NAME="RW02106ST-2">2</A>
Marei MG.
El-Ghanam M.
Salem MM.
Bull. Chem. Soc. Jpn.
1994,
67:
144
<A NAME="RW02106ST-3A">3a</A>
Mukai C.
Kobayashi M.
Kubota S.
Takahashi Y.
Kitagaki S.
J. Org. Chem.
2004,
69:
2128
<A NAME="RW02106ST-3B">3b</A>
Guerin DJ.
Miller SJ.
J. Am. Chem. Soc.
2002,
124:
2134
<A NAME="RW02106ST-4A">4a</A>
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew. Chem. Int. Ed.
2002,
41:
2596
<A NAME="RW02106ST-4B">4b</A>
Feldman AK.
Colasson B.
Fokin VV.
Org. Lett.
2004,
6:
3897
<A NAME="RW02106ST-4C">4c</A>
Appukkuttan P.
Dehaen W.
Fokin VV.
Van der Eycken E.
Org. Lett.
2004,
6:
4223
<A NAME="RW02106ST-4D">4d</A>
Kacprzak K.
Synlett
2005,
943
<A NAME="RW02106ST-4E">4e</A>
Akula RA.
Temelkoff DP.
Artis ND.
Norris P.
Heterocycles
2004,
63:
2719
<A NAME="RW02106ST-5A">5a</A>
Huang X.
Chen WL.
Zhou HW.
Synlett
2004,
329
<A NAME="RW02106ST-5B">5b</A>
Huang X.
Zhou H.
Chen W.
J. Org. Chem.
2004,
69:
839
<A NAME="RW02106ST-5C">5c</A>
Chen W.
Huang X.
Zhou H.
Synthesis
2004,
1573
<A NAME="RW02106ST-5D">5d</A>
Zhou H.
Huang X.
Chen W.
J. Org. Chem.
2004,
69:
5471
<A NAME="RW02106ST-5E">5e</A>
Chen W.
Huang X.
Zhou H.
Ren L.
Synthesis
2006,
609
<A NAME="RW02106ST-5F">5f</A> For synthesis of MCPs, see:
Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
For recent reviews, see:
<A NAME="RW02106ST-5G">5g</A>
Nakamura I.
Yamamoto Y.
Adv. Synth. Catal.
2002,
344:
111
<A NAME="RW02106ST-5H">5h</A>
Brandi A.
Cicchi S.
Cordero FM.
Goti A.
Chem. Rev.
2003,
103:
1213
<A NAME="RW02106ST-5I">5i</A>
Nakamura E.
Yamago S.
Acc. Chem. Res.
2002,
35:
867
See also:
<A NAME="RW02106ST-5J">5j</A>
Nakamura I.
Oh BH.
Saito S.
Yamamoto Y.
Angew. Chem. Int. Ed.
2001,
40:
1298
<A NAME="RW02106ST-5K">5k</A>
Oh BH.
Nakamura I.
Saito S.
Yamamoto Y.
Tetrahedron Lett.
2001,
42:
6203
<A NAME="RW02106ST-5L">5l</A>
Camacho DH.
Nakamura I.
Saito S.
Yamamoto Y.
J. Org. Chem.
2001,
66:
270
<A NAME="RW02106ST-5M">5m</A>
Yamago S.
Nakamura E.
J. Org. Chem.
1990,
55:
5553
<A NAME="RW02106ST-5N">5n</A>
Yamago S.
Yanagawa M.
Nakamura E.
Chem. Lett.
1999,
879
<A NAME="RW02106ST-5O">5o</A>
Lautens M.
Han W.
Liu JH.-C.
J. Am. Chem. Soc.
2003,
125:
4028
<A NAME="RW02106ST-5P">5p</A>
Shi M.
Chen Y.
Xu B.
Org. Lett.
2003,
5:
1225
<A NAME="RW02106ST-5Q">5q</A>
Shi M.
Xu B.
Tetrahedron Lett.
2003,
44:
3839
<A NAME="RW02106ST-5R">5r</A>
Chen Y.
Shi M.
J. Org. Chem.
2004,
69:
426
<A NAME="RW02106ST-6">6</A>
Zhou HW.
Huang X.
Chen WL.
Synlett
2003,
2080
<A NAME="RW02106ST-7A">7a</A>
Shi M.
Shao L.-X.
Synlett
2004,
807
<A NAME="RW02106ST-7B">7b</A>
Shi M.
Liu LP.
Tang J.
Org. Lett.
2005,
7:
3085
<A NAME="RW02106ST-8">8</A>
Typical Procedure for the Synthesis of 5.
To a stirred 95% EtOH (2 mL) solution of NaN3 (0.6 mmol), 2 (0.5 mmol) was added and the reaction mixture was stirred under reflux until the
reaction was complete, as monitored by TLC. Then, H2O (4 mL), ascorbic acid (0.1 g, 0.56 mmol), NaOH (0.022 g, 0.56 mmol), CuSO4 (0.01 g, 0.04 mmol), and alkyne 4 (0.6 mmol) were added and heated together at 70 °C until the reaction was complete
(monitored by TLC). Afterwards, the mixture was cooled to r.t. and H2O (15 mL) was added. The aqueous layer was extracted with EtOAc (3 × 15 mL). The organic
layer was dried over anhyd MgSO4. After evaporation, the residue was subjected to preparative TLC (eluent: PE-EtOAc,
1:6 to 1:3) to afford 1,4-disub-stituted 1,2,3-triazoles 5.
Selected Spectral Data for 5a.
Solid, mp 70-72 °C. 1H NMR (400 MHz, CDCl3): δ = 0.95 (t, 3 H, J = 7.33 Hz), 1.39-1.44 (m, 2 H), 1.64-1.71 (m, 2 H), 2.74 (t, 2 H, J = 7.66 Hz), 3.08 (t, 2 H, J = 6.41 Hz), 4.58 (t, 2 H, J = 6.41 Hz), 6.75 (dd, 2 H, J = 1.75, 7.79 Hz), 7.10-7.32 (m, 9 H). 13C NMR (100 MHz, CDCl3): δ = 152.17, 148.27, 146.08, 139.29, 128.50, 128.24, 127.91, 127.60, 127.56, 121.04,
102.68, 49.67, 42.45, 31.77, 25.32, 22.35, 13.85. IR: 2955, 2926, 1437, 1043, 701
cm-1.
<A NAME="RW02106ST-9">9</A>
The temperature (70 °C) is required for the triazole synthesis step in our reaction
by trial and error. At higher temperature 1,5-regioisomers can be formed and at lower
temperature the reaction was not complete after several hours.
<A NAME="RW02106ST-10A">10a</A>
Heck RF.
J. Am. Chem. Soc.
1968,
90:
5518
<A NAME="RW02106ST-10B">10b</A>
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
New York:
1995.
Reviews:
<A NAME="RW02106ST-10C">10c</A>
de Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
<A NAME="RW02106ST-10D">10d</A>
Cabri W.
Candiani I.
Acc. Chem. Res.
1995,
28:
2
<A NAME="RW02106ST-10E">10e</A>
Crisp GT.
Chem. Soc. Rev.
1998,
27:
427
<A NAME="RW02106ST-10F">10f</A>
Geret JP.
Savignac MJ.
J. Organomet. Chem.
1999,
576:
305
<A NAME="RW02106ST-10G">10g</A>
Beletskaya IP.
Cheprakov AV.
Chem. Rev.
2000,
100:
3009
<A NAME="RW02106ST-10H">10h</A> For a recent mechanistic study on Heck-type reaction see:
Amatorc C.
Jutand A.
J. Organomet. Chem.
1999,
576:
254
<A NAME="RW02106ST-11">11</A>
Typical Procedure for the Synthesis of 6.
Compound 5 (0.25 mmol), Pd(OAc)2 (0.025 mmol), tetrabutylammonium chloride (TBAC, 0.25 mmol), NaHCO3 (0.5 mmol), and N,N-dimethylformamide (DMF, 1 mL) were added into a Schlenk tube at r.t. The reaction
mixture was stirred at 100 °C until the reaction was complete, as monitored by TLC.
Then the reaction mixture was cooled and H2O (15 mL) was added. The aqueous layer was extracted with EtOAc (3 ¥ 15 mL). The organic
layer was dried over anhyd MgSO4. After evaporation, the residue was subjected to preparative TLC (eluent: PE-EtOAc,
1:6 to 1:3) to afford 4-alkylidene-5,6-dihydro-4H-pyrrolo-[1,2-c][1,2,3]-triazoles 6.
Selected Data.
Compound 6a: solid, mp 124-126 °C. IR: 2948, 2924, 1440, 764, 703 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.74 (t, 3 H, J = 7.26 Hz), 0.92-1.00 (m, 2 H), 1.20-1.28 (m, 2 H), 1.49 (t, 2 H, J = 7.45 Hz), 3.51 (t, 2 H, J = 6.89 Hz), 4.36 (t, 2 H, J = 6.89 Hz), 7.18-7.38 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 141.97, 141.94, 141.30, 138.43, 137.67, 129.92, 129.18, 128.72, 128.21, 127.86,
127.70, 123.51, 45.24, 37.50, 31.62, 25.35, 22.28, 13.76. MS (EI, 70 eV): m/z (%) = 329 (19) [M+]. Anal. Calcd for C22H23N3: C, 80.21; H, 7.04; N, 12.76. Found: C, 80.00; H, 7.16; N, 12.83.
Compound 7a: solid, mp 126-128 °C. IR: 2926, 1486, 1086, 828 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.91 (t, 3 H, J = 7.33 Hz), 1.34-1.40 (m, 2 H), 1.61-1.68 (m, 2 H), 2.73 (t, 2 H, J = 7.58 Hz), 2.99 (t, 2 H, J = 6.71 Hz), 4.54 (t, 2 H, J = 6.71 Hz), 7.27 (s, 4 H), 7.40 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 148.35, 134.24, 132.75, 128.61, 121.27, 120.96, 86.01, 82.23, 48.65, 31.55,
25.28, 22.22, 21.63, 13.78. MS (EI, 70 eV): m/z (%) = 287 (29.08) [M+]. Anal. Calcd for C16H18ClN3: C, 66.78; H, 6.30; N, 14.60. Found: C, 66.90; H, 6.21; N, 14.65.